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We study the generalized Bragg scattering of surface waves over a wavy bottom. We
consider the problem in the general context of nonlinear wave–wave interactions, and
write down and provide geometric constructions for the Bragg resonance conditions
for second-order triad (class I) and third-order quartet (class II and class III) wave–
bottom interactions. Class I resonance involving one bottom and two surface wave
components is classical. Class II resonance manifests bottom nonlinearity (it involves
two bottom and two surface wave components), and has been studied in the labo-
ratory. Class III Bragg resonance is new and is a result of free-surface nonlinearity
involving resonant interaction among one bottom and three surface wave compo-
nents. The amplitude of the resonant wave is quadratic in the surface wave slope
and linear in the bottom steepness, and, unlike the former two cases, the resonant
wave may be either reflected or transmitted (relative to the incident waves) depending
on the wave–bottom geometry. To predict the initial spatial/temporal growth of the
Bragg resonant wave for these resonances, we also provide the regular perturbation
solution up to third order. To confirm these predictions and to obtain an efficient
computational tool for general wave–bottom problems with resonant interactions,
we extend and develop a powerful high-order spectral method originally developed
for nonlinear wave–wave and wave–body interactions. The efficacy of the method is
illustrated in high-order Bragg resonance computations in two and three dimensions.
These results compare well with existing experiments and perturbation theory for the
known class I and class II Bragg resonance cases, and obtain and elucidate the new
class III resonance. It is shown that under realistic conditions with moderate to small
surface and bottom steepnesses, the amplitudes of third-order class II and class III
Bragg resonant waves can be comparable in magnitude to those resulting from class
I interactions and appreciable relative to the incident wave.

1. Introduction
When an incident wave travels over and interacts with non-uniform bottom depth,

the wave is modified and may be partially reflected, although for mild bottom
variations the reflection is in general weak. When the bottom contains periodic
undulations and the incident wave and bottom ripple wavenumbers satisfy so-called
Bragg conditions, however, the Bragg scattered wave becomes resonant and can
be greatly amplified. Such resonant wave interactions with bottom ripples play a
significant role in the evolution of nearshore surface waves. Although not yet proven,
they may also be related to the development of shore-parallel bars (e.g. Heathershaw
& Davies 1985).



298 Y. Liu and D. K. P. Yue

Owing to its importance, the resonant reflection of surface waves by bottom
ripples has been studied extensively in recent years. A direct perturbation analysis
shows that resonant reflection occurs when the periodic bottom undulation has a
wavelength half that of the incident wave (Davies 1982). This has been confirmed
in laboratory experiments (Davies & Heathershaw 1984). The resonance involves the
triad interaction of two surface and one bottom wave components, and the resonant
wave amplitude is linear in the surface and in the bottom wave steepnesses. We
denote this class I Bragg resonance. For mild incident wave and bottom slopes,
reflection at or near this Bragg resonance is well predicted by perturbation theory
based on multiple scales and the assumption of linearized surface waves (Mei 1985).
For small surface wave slopes, class I Bragg reflection has also been obtained using
the boundary-integral-equation method (BIEM) (Dalrymple & Kirby 1986) and the
successive-application-matrix model (SAMM) (Miles 1967; Guazzelli, Rey & Belzons
1992; O’Hare & Davies 1993). A major drawback of these numerical schemes which
employ direct discretizations of the bottom and free surfaces is the large computational
effort involved in extensions to three dimensions and to inclusion of (free-surface)
nonlinear effects. For the latter, Kirby (1986) recently examined nonlinear free-surface
effects on the magnitude of the class I Bragg reflection based on the extended mild
slope equation, but he did not study the occurrence of higher-order Bragg resonances.

For larger wave and/or bottom steepnesses, higher-order Bragg resonances resulting
from nonlinear interactions among the surface and bottom wave components can be
expected. For a bottom patch containing unidirectional doubly sinusoidal ripples,
significant Bragg reflection at the difference of the bottom-ripple wavenumbers is
observed in experiments even for relatively small ripple amplitudes (Guazzelli et al.
1992). This is a result of quartet resonance involving two surface and two bottom
wave components. This third-order Bragg reflection is linear/quadratic in the surface
wave/bottom ripple slopes respectively, and, for realistic bottom slopes, can be
comparable in magnitude (but occurs at distinct frequency) to class I Bragg reflection
and to the incident wave. We denote this class II Bragg resonance. Class II Bragg
reflection involving nonlinear bottom interactions can in principle be predicted by
BIEM and SAMM computations. An extension of Mei (1985)’s multiple scales
analysis to this case in two dimensions has recently been obtained by Rey, Guazzelli
& Mei (1996).

When nonlinear free-surface effects are included, a new class of Bragg resonance
involving third-order quartet interactions obtains. The resonance is among three
surface and one bottom wave components, and the resonant wave is now quadratic
in the surface wave steepness and linear in the bottom slope. Unlike the other two
cases which involve only reflection, the resonant wave can now be either reflected or
transmitted (relative to the incident wave) depending on the wave–bottom geometry
(see §3.3). We denote this class III Bragg resonance.

The main objectives of this work are to understand and quantify these high-order
Bragg resonance effects, and to develop and demonstrate an effective computational
method for general nonlinear wave–bottom (resonant) interaction problems. The
boundary-value problem is stated in §2. Generalized Bragg resonance conditions are
developed in §3 where we also provide geometric interpretations/constructions for
the resonant (surface and bottom) waves. In §4 we obtain the regular perturbation
solution for such Bragg resonances up to third order which provides the initial growth
rates of the resonant waves for later comparison. The computational approach we
use is an extension of the high-order spectral (HOS) method for nonlinear wave–
wave and wave–body interactions (Dommermuth & Yue 1987; Liu, Dommermuth &
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Yue 1992). For completeness, the formulation and implementation of this method is
outlined in §5 and convergence tests are given to support the validity and accuracy
of the method. Numerical results in two and three dimensions are presented and
discussed in §6 for existing and new Bragg resonance cases with comparisons made to
available experiments and theory for the former. We provide a short summary in §7.

2. Statement of the problem
We consider the propagation of surface waves over an undulated bottom. Let

(x, y) ≡ x be the horizontal coordinates, z the vertical coordinate, z = 0 the mean
free surface, and z = −h+ ζ(x) the varying bottom position with a (constant) mean
depth h. We assume the flow to be irrotational and the fluid itself homogeneous,
incompressible, and inviscid.

The flow can be described by a velocity potential Φ(x, z, t), which satisfies the
Laplace equation within the fluid. On the bottom, vanishing of the normal velocity
leads to

Φz − ∇xζ · ∇xΦ = 0 on z = −h+ ζ(x), (2.1)

where ∇x ≡ (∂/∂x, ∂/∂y) denotes the horizontal gradients. On the free surface, the
kinematic and dynamic boundary conditions can be combined to give

Φtt + gΦz + 2∇Φ · ∇Φt + 1
2
∇Φ · ∇(∇Φ · ∇Φ) = 0 on z = η(x, t), (2.2)

where g is the gravitational acceleration and the gradient operator is ∇ ≡ (∂/∂x, ∂/∂y,
∂/∂z). The boundary-value problem for Φ is complete with the imposition of a
radiation condition for outgoing scattered waves in the far field.

In terms of Φ, the free-surface elevation η(x, t) is given by

η = −1

g
(Φt + 1

2
∇Φ · ∇Φ) on z = η(x, t), (2.3)

which follows directly from the dynamic boundary condition on the free surface.
For small bottom and free-surface wave slopes, one can try a regular perturbation

solution to the stated nonlinear problem. For simplicity, we assume both bottom and
free-surface slopes to be measured by the same small parameter ε � 1. We write Φ
and η in perturbation series:

Φ(x, z, t) = Φ(1) + Φ(2) + · · · , and η(x, t) = η(1) + η(2) + · · · , (2.4)

where ()(m), m = 1, 2, . . ., denotes a quantity of O(εm). We then expand the bottom
and free-surface boundary conditions, (2.1) and (2.2), in Taylor series with respect
to the mean bottom and free-surface positions, z = −h and 0, respectively. After
substituting (2.4) into the Taylor expansions and collecting terms at the respective
orders, we obtain a sequence of bottom and free-surface boundary conditions applied
on z = −h and 0 for the perturbation potentials Φ(m), m = 1, 2, . . .. In addition to the
radiation condition, the complete boundary-value problem for Φ(m), m = 1, 2, . . ., can
then be given in the form:

∇2Φ(m) = 0, −h < z < 0,

Φ(m)
z = B(m)(Φ(1), · · · , Φ(m−1); ζ), z = −h,

Φ
(m)
tt + gΦ(m)

z = F (m)(Φ(1), · · · , Φ(m−1); η(1), · · · , η(m−1)), z = 0,

 (2.5)

where B(m), F (m) are known forcing functions given in terms of lower-order quantities
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and the bottom variation ζ (for B). Upon making a Taylor series expansion of (2.3)
about z = 0, the perturbed free-surface elevation η(m), m = 1, 2, . . ., is also determined
in terms of the perturbation potentials Φ(`), ` = 1, 2, . . . , m.

The sequence of boundary-value problems for Φ(m), (2.5), can presumably be solved
successively, starting from m = 1, up to any order for a wave field travelling over a
given bottom topography. The procedure, however, breaks down if resonant wave–
wave or wave–bottom interaction conditions obtain. For a (single) sinusoidal bottom
variation, for example, the solution breaks down at m = 2 at discrete free-surface
wavenumbers associated with (class I) Bragg resonant interactions among the surface
waves and bottom undulations (Davies 1982). At such Bragg resonances, the bottom
forcing B(2) in (2.5) becomes secular so that the associated solution for Φ(2) is singular.
Physically, this implies that a progressive wave is generated whose amplitude grows
with time. We now consider the general conditions under which such resonances
obtain.

3. Generalized Bragg conditions
The mechanism for Bragg resonances is analogous to that for nonlinear (surface)

wave–wave resonant interactions in the absence of bottom undulations. Thus, general
Bragg conditions can be deduced from the well-known resonance condition for
nonlinear wave–wave interactions (e.g. Phillips 1960). For a wave field over uniform
depth h, interactions among different wave components become resonant at order
m (in wave steepness) if the wave numbers kj and the corresponding frequencies ωj
satisfy:

k1 ± k2 ± · · · ± km+1 = 0

ω1 ± ω2 ± · · · ± ωm+1 = 0

}
(m > 2), (3.1)

where the same combination of signs is to be taken in both equations, and kj and ωj
satisfy the linear dispersion relation

ω2
j = g|kj | tanh |kj |h. (3.2)

Generalized Bragg resonance conditions in the presence of bottom ripples are ob-
tained by replacing one or more of the free-surface wave components in (3.1) by
periodic bottom ripple components of corresponding wavenumbers kbj but with zero
frequencies (since the ripples are fixed). Thus, by combining wavenumbers and fre-
quencies of surface waves and bottom ripples, we obtain general conditions for Bragg
resonances at each order, m = 2, 3, ....

3.1. Class I Bragg condition

Consider two surface wave components, wavenumbers k1 and k2, propagating over a
rippled horizontal bottom containing a single wavenumber kb (analogously to surface
waves, this refers to a fixed sinusoidally varying bottom with crest lines normal to
kb and with wavelength λb = 2π/|kb|). From (3.1), it follows that a Bragg resonance
occurs at m = 2 (second order in the bottom/free-surface wave steepness) if

k1 − k2 ± kb = 0,

ω1 − ω2 = 0.

}
(3.3)

Since ω1,2 > 0, the case with the plus sign in the frequency relation (3.3) is impossible
and is thus dropped. For |kb| 6= 0, the ± wavenumber relations in (3.3) cannot both
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Figure 1. Geometric construction of the class I triad and class II quartet Bragg resonant waves.

be satisfied. As a resonance condition, it is sufficient to consider one of the signs only.
For definiteness, we choose the condition for class I Bragg resonance to be

k1 − k2 − kb = 0,
ω1 − ω2 = 0.

}
(3.4)

From the dispersion relation (3.2), it is clear that the frequency relation in (3.4) implies
that |k1| = |k2|. This is the classical Bragg resonance involving the triad interaction of
the bottom (kb), the incident (k1 say) and the Bragg reflected wave (k2) components.
The reflection is second order, being linear in both the surface and bottom wave
slopes (see §4).

Given a bottom wavenumber kb, the free-surface wavenumbers k1 and k2 satisfying
the class I Bragg condition (3.4) can be obtained using a simple geometric construction.
The procedure is illustrated in figure 1 and consists of the following steps: (i) given

the vector kb= ~AB; (ii) draw its perpendicular bisector L which bisects AB at O;
(iii) for any arbitrary point P on L, the resonant surface wavenumbers are given

by k1 = ~AP , and k2 = ~BP . Note that the well-known condition for two-dimensional
Bragg resonance, k1 = −k2 = kb/2, is the special case when P coincides with O.

3.2. Class II Bragg condition

At third order (m = 3), quartet Bragg resonance conditions satisfying (3.1) obtain
involving either two/two or three/one surface/bottom wave components. We denote
these respectively class II and class III Bragg resonances. For the former, consider
a doubly sinusoidal bottom containing ripples with wavenumbers kb1 and kb2. The
class II Bragg resonance condition is obtained simply by replacing kb in (3.4) by the
sum or difference of kb1 and kb2:

k1 − k2 − (kb1 ± kb2) = 0,

ω1 − ω2 = 0.

}
(3.5)

The −/+ sign above refers to sub-/super-harmonic resonances respectively. The sub-
harmonic resonance of Guazzelli et al. (1992) is the special two-dimensional case (all
wavenumbers are in the same direction) with the − sign in the wavenumber condition
in (3.5). Given bottom wavenumbers kb1 and kb2, the free-surface wavenumbers k1

and k2 satisfying the class II Bragg condition (3.5) can be obtained geometrically
from figure 1 by simply replacing kb with the vector kb1 ± kb2.
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3.3. Class III Bragg condition

The other wave–bottom resonance at third-order involves the quartet interaction of
three surface and one bottom wave components. Consider the propagation of three
surface waves, wavenumbers k1, k2, k3, over a horizontal bottom containing uniformly
sinusoidal ripples, wavenumber kb. From (3.1), it follows that Bragg resonance obtains
at m = 3 if

k1 ± k2 ± k3 ± kb = 0,

ω1 ± ω2 ± ω3 = 0.

}
(3.6)

Without loss of generality, we can assume ω1 > ω2. It follows that ω1 ±ω2 +ω3 6= 0,
and (3.6) can be rewritten as

k1 ± k2 − k3 ± kb = 0,

ω1 ± ω2 − ω3 = 0.

}
(3.7)

We denote this resonance, which is quadratic in the surface wave slope and linear in
the bottom slope, class III Bragg resonance.

Our interest in general is to find four surface/bottom wavenumbers such that they
satisfy (3.7) to form a third-order Bragg resonance system. To do that, we apply the
dispersion relation (3.2) to rewrite (3.7) as

k1 ± k2 − k3 ± kb = 0,

(|k1| tanh |k1|h)1/2 ± (|k2| tanh |k2|h)1/2 − (|k3| tanh |k3|h)1/2 = 0.

}
(3.8)

Given any two wavenumbers, then, the other two can be determined in principle from
(3.8). For general finite depth, solutions to (3.8) have to be obtained numerically. To
illustrate the procedure and the solution feature, we consider two special cases: (i)
two of the surface wave components are identical (say, k1 = k2); and (ii) shallow
depth, for which the dispersion relationship is simplified.

For the case of k1 = k2, (3.8) can be rewritten in the form

k3 = 2k1 ± kb,
|2k1 ± kb| tanh |2k1 ± kb|h = 4|k1| tanh |k1|h,

}
(3.9)

where the second relation represents the fact that ω3 = 2ω1. Given a bottom wavenum-
ber kb and a mean depth h, the second relation determines the surface wavenumber
k1 and then the first relation gives the surface wavenumber k3. For shallow depth
(kbh � 1), it obtains that k1/kb = 1/4 cos θ for the sub-harmonic case (k3 = 2k1− kb),
where θ is the angle between k1 and kb, and k1/kb → ∞ for the super-harmonic case
(k3 = 2k1 + kb). For deep depth (kbh � 1), k1/kb = [(3 + cos2 θ)1/2 ∓ cos θ]/6 for
the sub/super-harmonic cases. Figures 2(a) and 2(b) show the solutions of k1 and k3

satisfying (3.9) for a given kb at a number of depths for the sub- and super-harmonic
cases, respectively. It is observed that for any depth, kb · k1 > 0 and kb · k3 < 0 for the
sub-harmonic case while kb · k1 > 0 and kb · k3 > 0 for the super-harmonic case. This
indicates that under the class III Bragg resonance, the sub/super-harmonic surface
wave (k3) is always reflected/transmitted respectively relative to the incident wave
(k1).

For shallow depth (|kj |h � 1, j = 1, 2, 3), we can obtain a geometric construction
for the general solution. To illustrate the geometric procedure, we assume k1 and kb
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Figure 2. Geometric construction of the class III quartet Bragg resonant waves for k2 = k1 for (a)
the sub-harmonic case: k3 = 2k1 − kb; and (b) the super-harmonic case: k3 = 2k1 + kb. The family
of curves with different depths is obtained by satisfying the resonant condition (3.9) for a given
bottom wavenumber kb and is symmetric with respect to kb.

to be known and k2 and k3 to be determined. For shallow depth, (3.8) reduces to

k3 = k1 ± kb ± k2,

|k3| = |k1| ± |k2|.

}
(3.10)

Upon substituting the first relation into the second relation, (3.10) can be expressed
as

k3 = k1 ± kb ± k2,

|k1 ± kb ± k2| = |k1| ± |k2|.

}
(3.11)

From the second equation of (3.11), it is clear that in order for k2 to exist, the +/−
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sign should be taken before k2 and |k2| for |k1 ± kb| > / 6 |k1|. We consider the two
cases, |k1 ± kb| > / 6 |k1|, separately in the following.

Case A: |k1 ± kb| > |k1|
In this case, since |k3|=|k1|+|k2|, |k3| > |k1 + k2|, (3.11) becomes

k3 = k1 ± kb + k2,

|k1 ± kb + k2| = |k1|+ |k2|.

}
(3.12)

Given kb and k1, the two wavenumbers k2 and k3 satisfying (3.12) can be constructed
geometrically. Figure 3(a) illustrates the procedure for the sub-harmonic (i.e. with −
sign before kb) case. The steps are as follows: (i) plot the two known wavenumber

vectors kb= ~OA and k1 = ~OB; (ii) construct the circle C, radius |k1|, centred at A;
(iii) draw an arbitrary ray L from A intersecting C at D; (iv) find a point P on L
such that PB = PD; (v) the other two resonant wavenumber vectors are given by

k2 = ~BP and k3 = ~AP . The complete trajectory S of the point P is obtained by
repeating steps (iii) and (iv).

Some characteristics of the solution curve S can be observed from figure 3(a). To
see these, it is helpful to: construct the normal bisector of OA, L0; the two tangents
BE, BF to the circle C; and extend AE and AF to form the two rays L1 and L2

(see figure 3a). First, S is tangent to L0 at the point G which is the solution for
the case when k1 and k2 are in the same direction. The point G moves on L0 as
the direction of k1 varies. Second, S lies on the same side of L0 as O as a result of
satisfying the condition |k3| > |k1 + k2|. Third, S is symmetric with respect to AB
and asymptotically approaches the rays L1 and L2 as |k2|, |k3| → ∞.

The procedure for the super-harmonic (+ before kb) case is similar to the sub-
harmonic case and is shown in figure 3(b). Unlike the sub-harmonic case (figure 3a),
the solution curve S for the super-harmonic case does not intersectL0 and is always
located on the opposite side of L0 relative to O.

Case B: |k1 ± kb| 6 |k1|
In this case, |k3|=|k1| − |k2|, |k3| 6 |k1− k2|, so that the Bragg resonance condition

(3.11) can be rewritten as

k3 = k1 ± kb − k2,

|k1 ± kb − k2| = |k1| − |k2|.

}
(3.13)

Unlike case A, the sub-harmonic and super-harmonic cases in (3.13) cannot both be
satisfied.

Given kb and k1, the remaining wavenumbers k2 and k3 satisfying (3.13) can again
be obtained geometrically. For the sub-harmonic case, k3 = k1 − k2 − kb, figure 4

illustrates the procedure: (i) plot the two known wavenumber vectors kb = ~AO and

k1 = ~OB; (ii) construct the circle C, radius |k1|, centred at A; (iii) draw an arbitrary
ray L from A intersecting C at D; (iv) find a point P on L such that PB = PD;

(v) the other two resonant wavenumber vectors are given by k2 = ~AP and k3 = ~PB.
The complete trajectory S of the point P is obtained by repeating steps (iii) and (iv).
The solution for the super-harmonic case, k3 = k1 − k2 + kb, can be constructed in a
similar way and is omitted.

Unlike case A, the solution curve S in figure 4 is now closed (this is also true for
the superharmonic case). The curve S is symmetric with respect to AB, is tangent
to the normal bisector, L0, of kb, and is always located on the opposite side of L0

from O.
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Figure 3. Geometric construction of the class III quartet Bragg resonant waves in the case of
shallow depth for |k1 ± kb| > |k1| for (a) the sub-harmonic case: k3 = k1 + k2 − kb; and (b) the
super-harmonic case: k3 = k1 + k2 + kb.
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Figure 4. Geometric construction of the class III quartet Bragg resonant waves for |k1± kb| 6 |k1|,
for the sub-harmonic case: k3 = k1 − k2 − kb. The solution for the super-harmonic case,
k3 = k1 − k2 + kb, can be contsructed similarly.

4. Perturbation solution
In this section, we solve the perturbation boundary-value problems (2.5) up to third

order to obtain the solutions for the velocity potential and the free-surface elevation
associated with the three classes of Bragg resonances in §3. For simplicity, we consider
the special case of a single incident wave travelling on an otherwise horizontal
bottom containing uniformly sinusoidal ripples (a single bottom wavenumber). As
we remarked in §2, steady-state solutions to (2.5) are not meaningful under Bragg
resonance conditions. In this case, the perturbation results for small time (space)
provide the initial temporal (spatial) behaviour of the Bragg scattering solution.

At first order, m = 1, we have B(1) = F (1) = 0, and the bottom ripples do not
affect the surface waves at this order. Φ(1) is a homogeneous solution of (2.5) and
represents, in general, a uniform propagating (or standing) wave over constant depth
h. For definiteness, we choose, as incident wave, a right-going propagating wave for
the first-order solution:

Φ(1) =

(
gA

ω

)
cosh |k|(z + h)

cosh |k|h sin(k · x− ωt), (4.1)

η(1) = A cos(k · x− ωt), (4.2)

where A is the amplitude of the incident wave with wavenumber k ≡ (kx, ky) and
frequency ω satisfying the dispersion relation (3.2).

At second order, m = 2, the bottom and free-surface forcing terms are given by

B(2) =
[
ζΦ(1)

x

]
x

+
[
ζΦ(1)

y

]
y
, z = −h,

F (2) = −η(1)
[
Φ

(1)
ttz + gΦ(1)

zz

]
− 2∇Φ(1) · ∇Φ(1)

t , z = 0.

 (4.3)
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For uniformly sinusoidal ripples, the bottom variation can be expressed as

ζ(x) = d sin(kb · x), (4.4)

where d is the ripple amplitude and kb the ripple wavenumber. Upon substituting
Φ(1), η(1), and ζ into (4.3), we obtain

B(2) = B(2)(k+) cos(k+ · x− ωt)−B(2)(k−) cos(k− · x− ωt),
F (2) =F(2) sin 2(k · x− ωt),

}
(4.5)

where k± = k ± kb and the coefficients B(2) and F(2) are given respectively by

B(2)(k±) =
gAd(k · k±)

2ω cosh |k|h and F(2) = − 3ω3A2

2 sinh2 |k|h
. (4.6)

Under the class I Bragg condition (3.4), k− and ω satisfy the dispersion relation (3.2)
so that the associated forcing term in B(2) becomes secular. A steady-state solution
is undefined in this case, and the appropriate solution for Φ(2) has time-dependent
amplitude and can be expressed as

Φ(2) = − tgB
(2)(k−) cosh |k−|(z + h)

2ω cosh2 |k−|h
sin(k− · x− ωt) + non-resonant terms, (4.7)

with the associated second-order free-surface elevation given by

η(2) = − tB(2)(k−)

2 cosh |k−|h cos(k− · x− ωt) + non-resonant terms. (4.8)

From (4.8) and (4.6), it is seen that under class I Bragg resonance, the resonant
wave amplitude grows linearly in time, is linearly proportional to the free-surface and
bottom wave slopes, and decreases exponentially as water depth increases.

Away from class I Bragg resonance, Φ(2) is regular and its solution can be expressed
as

Φ(2) = f(k+, z) cos(k+ · x− ωt)− f(k−, z) cos(k− · x− ωt)

+

(
3g|k|A2

4ω

)
cosh 2|k|(z + h)

sinh 2|k|h sinh2 |k|h
sin 2(k · x− ωt), (4.9)

where the function f(k±, z) is given by

f(k±, z) =
B(2)(k±)

|k±|

[
sinh |k±|(z + h)− ω2 tanh |k±|h− g|k±|

ω2 − g|k±| tanh |k±|h
cosh |k±|(z + h)

]
.

(4.10)
The second-order free-surface elevation can be obtained from

η(2) = −1

g
Φ

(2)
t −

1

2g
∇Φ(1) · ∇Φ(1) − 1

g
η(1)Φ

(1)
tz , z = 0. (4.11)

Upon substituting Φ(2) in (4.9), and Φ(1) and η(1) into (4.11), we obtain

η(2) = −ω
g

[
f(k+, 0) sin(k+ · x− ωt)− f(k−, 0) sin(k− · x− ωt)

]
+

(
|k|A2

2

)
2 + cosh 2|k|h

sinh 2|k|h tanh2 |k|h
cos 2(k · x− ωt)− |k|A2

2 sinh 2|k|h . (4.12)
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At third order, m = 3, the bottom and free-surface forcing terms are given by

B(3) =
[
ζΦ(2)

x

]
x

+
[
ζΦ(2)

y

]
y

+

[
ζ2

2
Φ(1)
x

]
x

+

[
ζ2

2
Φ(1)
y

]
y

, z = −h, (4.13)

and

F (3) = − 1
2
(η(1))2(Φ(1)

ttzz + gΦ(1)
zzz)− 1

2
∇Φ(1) · ∇(∇Φ(1) · ∇Φ(1))− 2η(1)

[
∇Φ(1) · ∇Φ(1)

t

]
z

−η(1)(Φ(2)
ttz + gΦ(2)

zz )− η(2)(Φ(1)
ttz + gΦ(1)

zz )− 2∇Φ(1) · ∇Φ(2)
t − 2∇Φ(2) · ∇Φ(1)

t , z = 0.

(4.14)

After substituting the first- and second-order solutions into (4.13) and (4.14), it follows
that

B(3) = B(3)
1 (k+) sin[(k+ + kb) · x− ωt] +B(3)

1 (k−) sin[(k− − kb) · x− ωt]

+B(3)
2 (k+) cos[(k+ + k) · x− 2ωt]−B(3)

2 (k−) cos[(k− + k) · x− 2ωt]

+other terms, (4.15)

and

F (3) =F(3)(k+) cos[(k+ + k) · x− 2ωt]−F(3)(k−) cos[(k− + k) · x− 2ωt]

+other terms, (4.16)

where, in the above, ‘other terms’ represents forcing terms irrelevant to Bragg reso-
nances. The coefficients B(3)

1 (k±), B(3)
2 (k±), and F(3)(k±) are given respectively by

B(3)
1 (k±) =

gAd2(k · k±)[k± · (k± ± kb)]
4ω|k±| cosh |k|h

(
ω2 tanh |k±|h− g|k±|
ω2 − g|k±| tanh |k±|h

)
, (4.17)

B(3)
2 (k±) = − 3g|k|A2d[k · (k + k±)]

4ω sinh 2|k|h sinh2 |k|h
, (4.18)

and

F(3)(k±) =

[
gωA2d(k · k±)

2|k| sinh 2|k|h

]
6|k|2 + (|k±|2 + 4k · k± − 5|k|2) cosh2 |k|h

|k| sinh |k|h cosh |k±|h− |k±| cosh |k|h sinh |k±|h
.

(4.19)

If the class II Bragg resonance condition (3.5) is satisfied, the bottom forcing with
wavenumber (k− − kb) becomes secular. The associated solutions for the third-order
velocity potential as well as the free-surface elevation are then given by

Φ
(3)
1 = − tgB(3)

1 (k−)

2ω cosh2 |k− − kb|h
cosh2 |k− − kb|(z + h) cos[(k− − kb) · x− ωt]

+non-resonant terms, (4.20)

and

η
(3)
1 =

tB(3)
1 (k−)

2 cosh |k− − kb|h
sin[(k− − kb) · x− ωt] + non-resonant terms. (4.21)

As indicated by (4.21) and (4.17), the resonant wave amplitude for class II Bragg
resonance is linear in the free-surface wave slope but quadratic in the bottom steepness.
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Thus class II resonance requires the inclusion of bottom nonlinear effects but obtains
without consideration of free-surface nonlinearities.

If the class III Bragg resonance condition (3.9) is satisfied, bottom and free-surface
forcings with wavenumber (k+ + k), or (k− + k), become secular resulting in super-
harmonic, or sub-harmonic, class III Bragg resonance respectively. The resonant
solution for the third-order velocity potential and the free-surface elevation are then
found to be

Φ
(3)
2 = ± tgB

(3)
2 (k±)− tF(3)(k±) cosh |k± + k|h

4ω cosh2 |k± + k|h

× cosh |k± + k|(z + h) sin[(k± + k) · x− 2ωt] + non-resonant terms, (4.22)

and

η
(3)
2 = ± tgB

(3)
2 (k±)− tF(3)(k±) cosh |k± + k|h

2g cosh |k± + k|h
cos[(k± + k) · x− 2ωt]

+non-resonant terms. (4.23)

Similarly to class II resonance, class III Bragg resonance occurs at third order. The
resonance is, however, nonlinear (quadratic) in the free-surface wave slope but linear
in bottom steepness.

We remark that the above analysis applies directly to the analogous problem of
surface wave–bottom interactions over a finite distance x (measured in the direction
of propagation of the resonated wave) for an unlimited time. The resonant solutions
in this case can be obtained simply by replacing the time, t, in the amplitudes of
(4.8), (4.21), and (4.23) by x/Cg , where Cg is the group velocity of the resonant
wave. Thus, Bragg resonant wave amplitudes always grow linearly with propagation
distance x and its maximum value increases linearly with the length L0 of the bottom
ripple patch. Away from resonances, the solution can be obtained by solving the
associated boundary-value problem using the Fourier transform technique (Davies
1982).

One also notes that the regular perturbation solutions in this section are not valid
at large time/distance under Bragg resonance conditions. To obtain uniformly valid
solutions, it is generally necessary to adopt analyses based on multiple scales (e.g.
Mei 1985 for class I Bragg scattering). The associated analyses for Bragg resonances
involving higher orders and more surface/bottom components, however, rapidly
become very long and complicated. The final results are also of limited value to the
general case involving multiple (non-specific) surface and bottom wave components
and resonant interactions. For these general cases of Bragg interactions, we propose
an extremely efficient direct computational method based upon high-order spectral
representations.

5. High-order spectral (HOS) method for wave–bottom interactions
To elucidate and validate the earlier predictions, and more importantly, to ob-

tain a computational method useful and efficient for general nonlinear (resonant)
wave–bottom interactions, we develop a highly efficient numerical solution of the
problem based on the high-order spectral (HOS) method for nonlinear wave–wave
(Dommermuth & Yue 1987) and wave–body (Liu et al. 1992) interaction problems.
In this approach, the original initial-boundary-value problem associated with (2.1)
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and (2.2) is solved directly and all nonlinear interactions up to an arbitrary order
M in free-surface and/or bottom steepnesses are accounted for. Using orthogonal
spectral expansions for the free-surface and bottom elevations, the solution converges
exponentially with the number of free-surface and bottom (for general irregular
topography) modes N. Furthermore, by employing fast transform techniques, the
computational effort per time step is only linearly proportional to the perturbation
order M and to the number of spectral modes N. The characteristics of the HOS
method are thus: exponential convergence and accuracy; nearly linear computational
effort; and inclusion of (arbitrary) high-order nonlinear free-surface and bottom
effects.

5.1. Mathematical formulation

The HOS method for wave–bottom problems is an extension of and follows closely
that of Dommermuth & Yue (1987) and Liu et al. (1992) for nonlinear wave–wave
and wave–body interactions. For completeness, we outline the main steps. We express
the nonlinear free-surface boundary conditions in the form of Zakharov (1968):

ηt + ∇xη · ∇xΦS − (1 + ∇xη · ∇xη)Φz(x, η, t) = 0,

ΦSt + gη + 1
2
∇xΦS · ∇xΦS − 1

2
(1 + ∇xη · ∇xη)Φ2

z(x, η, t) = 0,

}
(5.1)

where ΦS (x, t) = Φ(x, η(x, t), t) is the surface potential evaluated at the surface eleva-
tion η(x, t). Given the initial conditions η(x, 0) and ΦS (x, z, 0), (5.1) are the evolution
equations which integrate the initial-value problem provided that the surface vertical
velocity Φz(x, η, t) is obtained from the boundary-value problem at each time.

To solve the boundary-value problem, we consider regular perturbation expansions
in both the bottom undulation ζ(x) and the instantaneous free surface η(x, t). In
principle, the free-surface and bottom steepnesses (εf , εb) can be treated separately
and different perturbation orders (Mf , Mb) considered in the HOS method. For
simplicity, we assume εf ∼ εb = O(ε) and consider expansions up to the same
(arbitrary) order Mf = Mb = M in the free-surface/bottom wave slope ε. (Because of
the efficiency of the HOS method, keeping more terms than necessary for either εf or
εb does not create a substantial computational burden in practice but simplifies the
description in what follows and also somewhat the programming.) For the potential,
we have

Φ(x, z, t) =

M∑
m=1

Φ(m)(x, z, t), (5.2)

where Φ(m) = O(εm) are the perturbation potentials.

We then expand the surface potential ΦS and the bottom boundary condition
(2.1) in separate Taylor series with respect to the mean surfaces z = 0 and z = −h
respectively. After collecting terms at the respective orders, we obtain for successive
orders a sequence of Dirichlet conditions on z = 0:

Φ(1)(x, 0, t) = ΦS ,

Φ(m)(x, 0, t) = −
m−1∑
`=1

η`

`!

∂`

∂z`
Φ(m−`)

∣∣∣∣∣
z=0

, m = 2, 3, · · · ,M;

 (5.3)
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and Neumann conditions on z = −h:
Φ(1)
z (x,−h, t) = 0,

Φ(m)
z (x,−h, t) =

m−1∑
`=1

{
∂

∂x

[
ζ`

`!

∂(`−1)

∂z(`−1)
Φ(m−`)
x

∣∣∣∣
z=−h

]
+
∂

∂y

[
ζ`

`!

∂(`−1)

∂z(`−1)
Φ(m−`)
y

∣∣∣∣
z=−h

]}
, m = 2, 3, . . . ,M.


(5.4)

At each order m, the perturbation potential Φ(m) satisfies the Laplace equation
in the mean fluid domain −h < z < 0, (5.3) on z = 0, and (5.4) on z = −h. For
computations, the problem is typically closed by assuming periodic conditions in the
horizontal plane, say, [−Lx, Lx]× [−Ly, Ly].

In a spectral approach, we represent Φ(m) in terms of global basis functions which
satisfy the field equation and homogeneous surface and bottom conditions. Thus, we
write, Φ(m) = α(m) + β(m), where

α(m)(x, z, t) =

N/2∑
n=−N/2

α(m)
n (t)

cosh[|Kn|(z + h)]

cosh(|Kn|h)
eiKn · x + c.c., (5.5)

β(m)(x, z, t) = β
(m)
0 z +

N/2∑
n=−N/2

β(m)
n (t)

sinh(|K n|z)
|Kn| cosh(|Kn|h)

eiKn · x + c.c. (5.6)

Here, K n = (Kxn,Kyn) = (nπ/Lx, nπ/Ly) is the wavenumber vector of the Fourier
series. Note that α(m) and β(m) respectively satisfy the zero Neumann condition on
z = −h and the zero Dirichlet condition on z = 0. (In general, the number of free-
surface and bottom wavenumbers, say Nf and Nb, can be chosen independently in
the HOS method. For simplicity, we use Nf = Nb = N).

The perturbation modal amplitudes, α(m)
n and β(m)

n , are determined by taking the
inner product of eiKn · x with (5.3) and (5.4) respectively. For smooth (periodic) Φ(m), α(m)

n

and β(m)
n decay exponentially with increasing wavenumber |Kn|. After the boundary-

value problem for Φ(m) is solved successively up to the desired order M, the vertical
velocity on the free surface is determined from

Φz(x, η, t) =

M∑
m=1

M−m∑
`=0

η`

`!

∂`+1

∂z`+1
Φ(m)(x, 0, t). (5.7)

The evolution equations (5.1) are then integrated in time for the new values of ΦS and
η. The complete solution of the nonlinear initial boundary-value problem is obtained
by repeating this process starting from initial conditions.

5.2. Implementation

The implementation of the HOS method for a solution up to a given order M consists
of two main parts:

(a) Given the surface elevation η(x, t) and potential ΦS (x, t) at time instant t,
the modal amplitudes α(m)

n and β(m)
n subject to the Dirichlet condition (5.3) and the

Neumann condition (5.4) are solved using a pseudo-spectral method. Specifically,
all spatial derivatives of Φ(m), ΦS and η are evaluated in wavenumber space while
nonlinear products are calculated in physical space at a discrete set of points xj .
For periodic boundary conditions using the Fourier expansions (5.5) and (5.6), xj
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Nw M = 2 M = 3 M = 4

16 0.7250 0.7080 0.7080
24 0.7115 0.7111 0.7113
32 0.7115 0.7112 0.7113

Table 1. Convergence of the class I Bragg reflection coefficient, R=ar/A, with increasing number
of wavelengths Nw = 2L/λ of the computational domain and for different orders M. The fixed
parameters are: L0/λb = 10, kbd = 0.31, d/h = 0.16, kb/k = 2, kA = 0.05; and N/Nw = 64,
T/∆t = 64, Ts/T = 20.

are equally spaced and fast-Fourier transforms are used to project between the
wavenumber and physical domains. At each order, (5.3) and (5.4) are solved in
wavenumber space by equating Fourier modes, and the number of operations required
is O(N lnN). For perturbations up to orderM, the operation count is then O(MN lnN)
per time step.†

(b) The evolution equations (5.1) are integrated in time to obtain the new values
η(x, t + ∆t) and ΦS (x, t + ∆t). For the present computations, we use a fourth-order
Runge–Kutta integrator with constant time step ∆t.

The two steps (a)–(b) are repeated starting from initial values.

5.3. Convergence tests

To demonstrate the accuracy and convergence of the HOS method, we use as an
illustration a class I Bragg reflection problem of an incident surface wave, wavenumber
k = 2π/λ, propagating normally over a patch of uniformly sinusoidal bottom ripples,
wavenumber kb = 2π/λb.

For this example, the following parameters are used: the length of the bottom
patch L0/λb = 10; the slope of the bottom undulations kbd = 0.31; and mean depth
d/h = 0.16. For the incident wave, we use an exact finite-depth Stokes wave (Schwartz
1974), wavenumber k = 2π/λ = kb/2; period T ; and wave slope ε ≡ kA = 0.05, where
2A ≡ ηmax − ηmin. To demonstrate numerical convergence, we vary the order M, the
numbers of free-surface/bottom modes N, the length of the (periodic) computational
domain 2L = Nwλ, the time step for the fourth-order Runge–Kutta integration ∆t,
and the total simulation time Ts.

Similar to the wave–body interaction problem of Liu et al. (1992), the radiation
condition at the far field is replaced by periodic boundary conditions in the horizontal
direction. The bottom ripple patch is placed at the centre of the computational domain,
[−L0/2, L0/2], and errors associated with the periodic boundaries are controlled by
successively increasing the length, 2L = Nwλ, of the computational domain. Table 1
shows the results for the class I Bragg reflection coefficient R ≡ ar/A, where ar is
the amplitude of the Bragg reflected wave. The convergence with the length of the
computational domain, 2L = Nwλ, and with the order M is evident. For Nw = 32, for
example, the reflection coefficient R has converged to four significant figures.

For moderate bottom and free-surface slopes (cf. Dommermuth & Yue 1987) and
orthogonal global basis functions, the convergence of (5.5) and (5.6) with respect to
N is expected to be exponentially rapid. Table 2 shows the convergence of the class
I Bragg reflection coefficient with increasing N/Nw (number of Fourier modes per

† At first glance, the effort for computing the summation in (5.7) appears to be proportional to

M2. After the summation is rewritten as
∑M

`=0
(η`/`!)(∂`+1/∂z`+1)

∑M−`
m=1

Φ(m), however, it becomes

clear that the effort in fact is linearly proportional to M.
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N/Nw M = 2 M = 3 M = 4

16 0.7125 0.7110 0.7155
32 0.7110 0.7106 0.7107
64 0.7115 0.7112 0.7113

Table 2. Convergence of the class I Bragg reflection coefficient, R=ar/A, with increasing number
of spectral modes N for different orders M. The fixed parameters are: L0/λb = 10, kbd = 0.31,
d/h = 0.16, kb/k = 2, kA = 0.05; and Nw=2L/λ = 32, T/∆t = 64, Ts/T = 20.

Ts/T M = 2 M = 3 M = 4

11 0.7615 0.7550 0.7510
12 0.7455 0.7352 0.7320
13 0.7310 0.7265 0.7250
14 0.7200 0.7180 0.7170
15 0.7150 0.7130 0.7125
16 0.7116 0.7113 0.7112
17 0.7115 0.7114 0.7111
18 0.7113 0.7112 0.7112
19 0.7114 0.7113 0.7112
20 0.7115 0.7112 0.7113

Table 3. Convergence of the class I Bragg reflection coefficient, R = ar/A, with increasing total
simulation time Ts/T for different orders M. The fixed parameters are: L0/λb = 10, kbd = 0.31,
d/h = 0.16, kb/k = 2, kA = 0.05; and Nw=2L/λ = 32, T/∆t = 64, N/Nw = 64.

surface wavelength) for different orders M. The results in table 2 confirm the expected
exponential convergence of the solution.

For a finite bottom patch, our typical interest is in the steady-state values of the
resonant wave amplitudes. To obtain reliable results in an initial-value approach, we
increase the simulation time Ts successively until the predicted values reach steady
state. Table 3 shows the convergence of R with the simulation time Ts/T for different
orders M. Steady-state values for R are reached rapidly (to almost four decimals)
after Ts/T ∼ 15 (for L0/λb = 10).

The convergence with the time step ∆t/T of the present fourth-order Runge–Kutta
integration scheme is also tested systematically, recovering the expected O(∆t/T )4

global error. These are not presented separately (similar convergence results can be
found in Liu et al. 1992). Unless otherwise stated, for all subsequent computations in
this paper, we use Nw = 32 and N = 64Nw per horizontal dimension, Ts/T = 15–25,
and T/∆t = 64. Based on the foregoing numerical tests, we anticipate the maximum
error in the predicted wave amplitudes to be less than 1%.

We remark in closing this section that because of the high efficiency of the HOS
method, computational costs are relatively small for all the cases we present. For the
tests above with M = 4 and N = 2048, for example, the HOS simulation requires
only O(10−2) CPU s per time step (less than 1 CPU s per wave period) on a (single
processor) Cray-YMP computer. The computational parameters we have chosen
are therefore unnecessarily conservative, and have we not resorted to many of the
techniques (e.g. taper filtering of the far-field waves) which we have found useful for
larger-scale practical applications (Liu 1994).
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6. Numerical results
In this section, we apply the HOS method of §5 to simulate nonlinear wave inter-

actions with an underlying patch of bottom ripples. Both two- and three-dimensional
high-order computations are performed. The primary focus is on the three classes of
Bragg resonances analysed in §§3, 4. We present results for known Bragg resonance
cases for which we make comparisons to available experimental data and theoretical
(regular and multiple-scale perturbation) solutions. We also present illustrative exam-
ples of the new class II (bi-directional bottom ripples) and class III Bragg resonance
interactions. In all cases, we choose physical parameters which correspond exactly
to experimental values or which accentuate the solution features of the resonance in
question.

6.1. Class I Bragg resonance

We consider the development of incident and Bragg reflected waves, wavenumbers k1

and k2 respectively, over a bottom patch with a single sinusoidal ripple of wavenumber
kb. If the class I Bragg condition (3.4) is satisfied, the reflected wave associated with
k2 is amplified as a result of resonant quadratic interaction between the incident wave
and the bottom variation. This condition has been studied experimentally by Davies
& Heathershaw (1984). For small incident wave and bottom slopes, reflection at or
near the class I Bragg resonance is predicted well by multiple-scales perturbation
theory under the assumption of linearized surface waves (Mei 1985). Here we obtain
direct computational demonstration of class I Bragg resonance using the HOS method
which also allows us to investigate higher-order nonlinear effects of the free surface
and bottom on this class of resonant reflection.

To compare with experiments, we choose a case of Davies & Heathershaw (1984)
with L0/λb = 10 (a bottom patch containing 10 complete sinusoidal ripples) and
bottom slope kbd = 0.31. In addition to the normal incidence they consider, we
also study the more general case of oblique incidence. We perform direct nonlinear
(M = 3) simulations to obtain the steady-state (limit-cycle) free-surface elevation
η(x, t) from which the reflection and transmission wave amplitudes are extracted (see
the Appendix).

6.1.1. Normal incidence

In this case, k1 and kb, and consequently, k2, are in the same direction and the
problem is two-dimensional. Figure 5 shows the HOS solution, M = 3 (the results
for M = 2 and 3 hardly differ for this case, cf. §5.3) for the spatial variation
of the Bragg reflection coefficient R(x) at the (linearized) Bragg resonance value,
k ≡ k1 = k2 = kb/2, for two different mean water depths corresponding to d/h = 0.1
and 0.14. (The small oscillations in the HOS results are due to the use of Gota
& Suzuki (1976)’s simple formula to extract the steady-state coefficient from time
history.) For comparison, we also show results from the experiments of Davies &
Heathershaw (1984), and the multiple-scale perturbation theory of Mei (1985). The
agreement is satisfactory, with all three results showing the expected (cf. (4.8)) linear
variations and slopes of R(x) over the bottom patch (x/λb ∈ [−5, 5]).

A more interesting comparison is to vary k/kb and observe the variation of the Bragg
reflection coefficient in the neighborhood of the class I Bragg resonance. This is shown
in figure 6 for the case d/h = 0.16. The HOS results (with M = 3) are compared with
the measured values of Davies & Heathershaw (1984) and the perturbation solution
of Mei (1985). The agreement among them is overall satisfactory. One effect seen in
the experimental data is the downshift in wavenumber of the peak Bragg reflected
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Figure 5. Spatial variation of the class I Bragg reflection coefficient over a bottom ripple patch
−5λb < x < 5λb, for kA = 0.05, kbd = 0.31. Results plotted are: experiments (Davies & Heathershaw
1984) (�); perturbation theory (Mei 1985) (— · —); and HOS computations for M = 3 (——).
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Figure 6. Class I Bragg reflection coefficient near the linearized class I condition, 2k/kb = 1, for
kA = 0.05, kbd = 0.31, d/h = 0.16. Results plotted are: experiments (Davies & Heathershaw 1984)
(�); perturbation theory (Mei 1985) (— · —); and HOS computations for M = 3 (2).

wave relative to the linearized Bragg point, 2k/kb = 1. This is predicted by the present
high-order computation but is not present in Mei’s perturbation theory.

The resonant wavenumber downshift can in general be attributed to nonlinear
effects associated with the problem. In the present case, free-surface nonlinearity is
manifest primarily in the Stokesian decrease in surface wavenumber with increasing
steepness which should result in an increase of the resonant (linearized) value of
k relative to kb. On the other hand, nonlinear effects associated with the bottom
variations would in general lead to a downshift of the resonant wavenumber. To
obtain an estimate of this effect, we assume small-amplitude surface waves and slowly
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varying bottom variations, and write the dispersion relation as

ω2 = gk tanh k[h+ ζ(x)]. (6.1)

For kζ � kh = O(1), we expand the wavenumber k(x) in a perturbation series:

k(x) = k0 + k1(x) + k2(x) + · · · , (6.2)

where k0 is independent of x and given by ω2 = gk0 tanh k0h. Substituting (6.2) into
(6.1) and solving for the perturbation wavenumbers, we obtain

k1(x)

k0

= − 2k0ζ

2k0h+ sinh 2k0h
, (6.3)

and

k2(x)

k0

=
2(k0ζ)

2

(2k0h+ sinh 2k0h)3
[4k0h+ (3 + cosh 2k0h) sinh 2k0h] . (6.4)

After taking the spatial average ( ) of k(x), it follows that

k̄ = k0 +
(k0|ζ|)2

(2k0h+ sinh 2k0h)3
[4k0h+ (3 + cosh 2k0h) sinh 2k0h] + · · · . (6.5)

The second term in (6.5) is always positive, so that bottom nonlinearity in general in-
creases the average free-surface wavenumber and thus shifts the peak Bragg reflection
to a lower wavenumber relative to the linearized Bragg point. Note that non-constant
k(x) also leads to evanescent wave modes which have been suggested as a cause of
the resonant frequency downshift (Guazzelli et al. 1992).

Nonlinear free-surface and bottom effects on class I Bragg reflection are obtained
more systematically by repeating the simulations varying the free-surface and bottom
wave steepnesses. The results are reported in Liu (1994) and are not repeated here.
Our results indicate that nonlinearities of the free-surface and bottom boundaries are
second order in the associated steepness and are generally small as far as the Bragg
reflected wave amplitude is concerned.

6.1.2. Oblique incidence

As indicated by (3.4), class I Bragg resonance also occurs when the incident
wave (k1) is oblique to the bottom ripples (kb). We consider the same bottom
geometry as in §6.1.1 (d/h = 0.16) but vary the angle θ between kb and k1 (measured
counter-clockwise from kb which we set parallel to the x-axis). The problem is now
three-dimensional, and for the numerical simulation, we employ a (doubly periodic)
computational domain of dimensions Nwxλx by Nwyλy , where the incident wavelength
is λ = 2π/|k1| = λx cos θ = λy sin θ and (Nwy/Nwx)

1/2 = tan θ. The simulations are
carried out until steady-state free-surface elevation is obtained, and the reflection and
transmission coefficients are determined from (A 4) and (A 5).

Figure 7 plots the class I Bragg reflection coefficient at linearized Bragg resonance
(3.4) as a function of the oblique incidence angle θ. Comparison is made to the
perturbation theory of Mei, Hara & Naciri (1988), and the agreement is excellent.
For both the numerical solution and the perturbation theory, figure 7 shows that
at the critical incidence angle of θ = π/4, wave propagation is unaffected by the
presence of the bottom ripples. For oblique incidence, the magnitude of the incident
wavenumber kh increases (in order to still satisfy Bragg condition) and the relative
effect of the bottom variations diminshes. Thus the downshift observed in figure 6 as
well as the Bragg resonance effect itself become weak as θ increases.
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Figure 7. Class I Bragg reflection coefficient as a function of incidence wave angle θ relative to the
bottom ripples, for kA = 0.05, kbd = 0.31, d/h = 0.16. Results plotted are: perturbation theory (Mei
et al. 1988) (— · —); and HOS computations for M = 2 (4), and M = 3 (2).
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Figure 8. Class I Bragg reflection coefficient near the linearized class I condition, 2kx = 2k cos θ = kb,
for a fixed (oblique) incidence θ = 19.47◦, and kA = 0.05, kbd = 0.31, d/h = 0.16. Results plotted
are: perturbation theory (Mei et al. 1988) (— · —); and HOS computations for M = 3 (2).

At a fixed incidence angle of θ = 19.47◦ = tan−1(1/8)1/2, figure 8 shows the
computed Bragg reflection coefficient in the neighbourhood of the class I resonance
point compared to the perturbation theory of Mei et al. (1988). The comparison is
excellent.

6.2. Class II Bragg resonance

When the bottom consists of doubly sinusoidal ripples, say wavenumbers kb1 and
kb2, class II Bragg resonance occurs when (3.5) is satisfied. Although class II Bragg
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Figure 9. Bragg reflection coefficient for a wave incident normally upon a doubly periodic ripple
bottom in the neighbourhood of frequencies satisfying class I Bragg resonances: f1 at k = kb1/2; f2

at k = kb2/2; and sub-harmonic class II Bragg resonance: f− at k = (kb1 − kb2)/2. Results plotted
are: experiments (Guazzelli et al. 1992) (�), HOS computations for M=3 (2); and, near f−, SAMM
numerical results (Guazzelli et al. 1992) (- - -), and perturbation theory (Rey et al. 1996) (— · —).

resonance involves quartet interactions (two bottom components) and is in theory one
order higher than class I Bragg reflection, for realistic bottom conditions the resonant
wave can in fact have amplitudes which are comparable in magnitude to class I
reflection (and occurs at distinct frequencies). This has been observed, for example, in
the experiments of Guazzelli et al. (1992) who consider the two-dimensional problem
of normal incidence of a wave over a bottom containing doubly sinusoidal ripples.

6.2.1. Unidirectional bottom undulations

We first study the case of Guazzelli et al. (1992) involving normal incidence
over bottom undulations containing unidirectional doubly sinusoidal (two differ-
ent wavelengths) ripples. The bottom topography they consider is: ripple patch
length L0 = 48 cm, ripple amplitudes d1 = d2 = 1 cm, and ripple wavenumbers
kb1 = π/3 cm−1 and kb2 = π/2 cm−1, and mean water depth h = 4 cm. For these
conditions, we perform HOS (M = 3) simulations for a range of incident wavenumber
k. The transmission and reflection coefficients are obtained from (A 4) and (A 5) after
steady-state wave elevation is reached.

Figure 9 shows the Bragg reflection coefficient in the neighbourhood of the two class
I and the sub-harmonic class II Bragg resonances. The HOS results are compared
with the experimental and SAMM numerical values of Guazzelli et al. (1992) and
the multiple-scale perturbation solution of Rey et al. (1996). The HOS computations
agree well with measurements at all three resonances for both the peak frequencies
and amplitudes. As in the case of class I Bragg resonance (see figure 6), perturbation
theory does not predict the downshift of the peak frequency, and in this case also
overestimates the peak reflection amplitude for the class II Bragg resonance. As
pointed out by Guazzelli et al. (1992), the downshift at f− is predicted by SAMM
which accounts for bottom nonlinearities. Note that, for the conditions chosen, the
sub-harmonic class II reflected wave is comparable in magnitude to the lower-order
class I Bragg reflection and is appreciable relative to the incident wave.

Finally, we note that, in theory, a super-harmonic class II Bragg resonance also
exists in this case and is observed in HOS simulations. In this case, the amplitude of
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Figure 10. Spatial variation of class II Bragg reflection coefficient for a wave incident upon a
bottom patch (|x, y| < 3λ) of doubly periodic ripples, kb1 = (k/2, k), kb2 = (k/2, 0), and k1 = (k, 0),
kr = (0,−k), kd1 = kd2=0.15, kA = 0.05. Results are from HOS simulation with M = 3.

this high-wavenumber super-harmonic class II reflected wave is, however, negligibly
small relative to those associated with class I and sub-harmonic class II resonances
shown in figure 9.

6.2.2. Bidirectional bottom undulations

A case of class II Bragg resonance not considered by Guazzelli et al. (1992) but
which should be of practical interest is the three-dimensional problem of a wave
incident upon a bottom patch composed of bidirectional sinusoidal ripples. To be
specific, and to illustrate super-harmonic class II Bragg reflection, we choose a case
with bottom wavenumbers kb1 = (k/2, k) and kb2 = (k/2, 0), and an incident wave
parallel to one of them with wavenumber k1 = (k, 0). It follows from the class II
condition (3.5) that a super-harmonic Bragg reflected wave will be resonantly excited
which has wavenumber, kr = (0,−k), perpendicular to the incident wave.

We verify this with direct HOS simulation. For definiteness, we choose incident
wave steepness kA = 0.05, bottom slopes kd1 = kd2 = 0.1, mean water depth kh = 1.5,
and a bottom-ripple patch of dimensions kL0x = kL0y = 12π centred at the origin.
Figure 10 shows the steady-state spatial variation over the bottom patch of the
amplitude of the super-harmonic class II reflected wave, wavenumber kr = (0,−k).
The maximum Bragg reflection coefficient in this case is about 0.2. Additional HOS
simulations confirm that the maximum amplitude of this class II Bragg reflected wave
depends quadratically on the bottom slope and linearly on the length of the bottom
patch (in the direction of kr).
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6.3. Class III Bragg resonance

We now consider the third-order class III Bragg resonance which occurs when free-
surface nonlinearity is included. The resonance condition to be satisfied is (3.7) which
shows that the resonance is a result of interactions among one bottom and three
surface wave components. Unlike class I and class II Bragg reflections, the class
III resonant wave may be reflected or transmitted (relative to the incident waves)
depending on the wave–bottom geometry (cf. figures 2a and 2b). Although this
class of resonance can be anticipated directly from theoretical wave–wave interaction
considerations, and may have implications (comparable to class I and II Bragg reflec-
tions and nonlinear surface wave–wave interactions) for coastal wave propagation, it
appears not to have been investigated so far.

To illustrate the mechanism of this class of Bragg resonance, we consider the
simplest possible case involving a single incident wave, wavenumber k, frequency
ω, incident normally or obliquely upon uniformly sinusoidal ripples of a single
wavenumber kb. For this case, the class III Bragg resonance condition (3.7) can be
satisfied by accounting for the incident wave twice (i.e. k2 = k1 ≡ k), and a reflected
sub-harmonic (k3 ≡ kr = 2k− kb) or transmitted super-harmonic (k3 ≡ kt = 2k+ kb)
wave is generated at double-frequency (2ω) as a result of quartet interactions among
the surface waves and the bottom ripple. In the following, both HOS simulation results
and regular perturbation solutions (§4) are presented to elucidate basic characteristics
of the generated sub- and super-harmonic double-frequency waves associated with
the class III Bragg resonance.

6.3.1. Normal incidence

For normal incidence, all wavenumbers are in the same direction and the problem
is two-dimensional. For numerical illustration, we choose a patch of bottom ripples
with the patch width L0 = 36λb and the bottom steepness kbd = 0.25 in a mean
depth of kbh = 2.642. For such a bottom topography, according to (3.9), class III
Bragg resonance occurs when the incident wavenumber is k ≈ 0.227kb resulting in
the generation of a sub-harmonic wave, wavenumber kr ≈ 0.546kb, which is reflected
(i.e. propagates in a direction opposite to the incident wave).

Figure 11 shows the variation of the sub-harmonic reflection coefficient in the
neighbourhood of the class III resonance wavenumber (k = 0.227kb). The numerical
results are obtained from HOS using orders M = 3 and M = 4. For both incident
wave steepnesses kA = 0.03 and 0.06, it is clear that the class III Bragg phenomenon
is captured well by accounting for interactions up to third order, M = 3.

For the relatively small surface and bottom steepnesses, the regular perturbation
solution of §4 provides a useful comparison. On the basis of the analysis of §4, the
perturbation solution for the reflected double-frequency wave amplitude is obtained
to be

Ar(kr) =
[
gB(3)

2 −F(3) cosh krh
] krL0 sinh krh sin[(kr + 2k − kb)L0/2]

ωg(2krh+ sinh 2krh)[(kr + 2k − kb)L0/2]
(6.6)

where the coefficients B(3)
2 andF(3) are given by (4.18) and (4.19), respectively. This is

also plotted in figure 11. For both incident wave steepnesses kA = 0.03 and 0.06, it is
seen that the comparisons are excellent except that the location of peak reflection is
downshifted in wavenumber relative to the linearized Bragg point. Unlike the earlier
class I and II resonances, nonlinear surface wave interactions enter the picture, and
the downshift is greater for larger surface wave steepness in this case.
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Figure 11. Class III sub-harmonic Bragg reflection coefficient near the linearized Bragg resonance
condition, k/kb = 0.227 (indicated by ↓) for kbh = 2.642, kbd = 0.25 and L0 = 36λb. Results for
two incident steepnesses are given: (i) kA = 0.03 for HOS simulations with M = 3 (—2—), M = 4
(—©—); and regular perturbation theory (- - -); and (ii) kA = 0.06 for HOS simulations with
M = 3 (—4—), M = 4 (—3—), and regular perturbation theory (— · —).
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Figure 12. Spatial variation of the class III sub-harmonic Bragg reflected wave amplitude over a
bottom patch (|x|/λb 6 18) of sinusoidal ripples, kbd = 0.25 and kbh = 2.642. The perturbation
solution (——) is obtained at the exact linearized class III condition, k/kb = 0.227; while the HOS
simulations with M = 3 (- - -) and M = 4 (— · —) are obtained at k/kb = 0.225 for kA = 0.03 and
k/kb = 0.222 for kA = 0.06, corresponding respectively to peak amplitudes in the reflected wave
(see figure 11).

Figure 12 shows the comparison between the simulation results and the regular
perturbation solution for the spatial variation of the sub-harmonic class III Bragg
reflection coefficient over the bottom ripple patch. For the present bottom geometry,
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Figure 13. Spatial variation of the class III super-harmonic Bragg transmitted wave amplitude over
a bottom patch (|x|/λb 6 2.5) of sinusoidal ripples, kbd = 0.025 and kbh = 0.325. The perturbation
solution (——) is obtained at the exact linearized class III condition, k/kb=2.031; while the HOS
simulations with M = 3 (- - -) and M = 4 (— · —) are obtained at k/kb = 2.021 for kA = 0.03 and
k/kb = 2.025 for kA = 0.06, corresponding respectively to peak amplitudes in the transmitted wave.

the perturbation solution of the reflected sub-harmonic wave amplitude (Ar) over the
bottom ripple is obtained from (4.23) to be

Ar(x) ≈ 0.0058(kA)2(kbd)(L0/2− x), −L0/2 < x < L0/2. (6.7)

The comparison is excellent for the smaller incident wave steepness case of kA = 0.03,
and, as expected, is less so but still satisfactory for the larger steepness case of
kA=0.06, where the perturbation theory somewhat overestimates Ar .

For class III super-harmonic wave transmission, analogous results can be obtained.
For illustration, we consider a case where L0 = 5λb, kbd = 0.025, and kbh = 0.325.
According to (3.9), for class III Bragg resonance, we set incident wavenumber k =
2.031kb, and anticipate the resonant generation of a super-harmonic transmitted wave
(travelling in the same direction as the incident wave) of wavenumber kt ≈ 5.062kb.

Figure 13 shows the spatial variation of the class III super-harmonic transmitted
wave amplitude At(x) obtained using HOS with M = 3 and M = 4 compared with
the perturbation solution (4.23) which gives

At(x) ≈ 6.3862(kA)2(kbd)(x+ L0/2), −L0/2 < x < L0/2. (6.8)

The agreement is again excellent for the smaller incident wave steepness kA = 0.03,
and is acceptable for kA = 0.06 for which the perturbation solution still somewhat
overestimates At.

Note that as indicated by the perturbation solution ((6.7) and (6.8)), the amplitudes
of both sub-harmonic reflected and super-harmonic transmitted waves associated with
the class III Bragg resonance increase linearly with the width of the bottom patch
(L0) and the bottom slope (kbd) and are quadratic in the incident wave steepness (kA).
This behaviour of the solution is confirmed by direct HOS simulations.
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Figure 14. Class III sub-harmonic Bragg reflection coefficient as a function of incidence wave
angle θ relative to the bottom ripples, for kA = 0.03, kbd = 0.25 and L0/λb = 36. Results plotted
are: regular perturbation solutions (——) for kbh = 2.2 and (- - -) for kbh = 2.642; and HOS
computations for M = 3 (2) and M = 4(©) for the respective mean depths.

6.3.2. Oblique incidence

Condition (3.9) indicates that class III Bragg resonance can also occur when
the incident wave (k) is oblique to the bottom ripples (kb). For this case, a main
concern is the influence of the incident angle θ between k and kb (measured counter-
clockwise from kb say) upon the development and amplitudes of the class III resonant
reflected/transmitted double-frequency waves (kr and kt).

To illustrate oblique sub-harmonic wave reflection under class III Bragg conditions,
we employ the same bottom patch as in the normal-incidence reflection case in
§6.3.1: L0 = 36λb, kbd = 0.25, kbh = 2.642. We fix the incident wave steepness to
be kA = 0.03 and vary the incident angle θ. For a given angle θ, we determine
the resonant incident wavenumber magnitude k according to the class III Bragg
condition (3.9) and perform a (three-dimensional) HOS simulation to obtain the
reflected sub-harmonic wave. Figure 14 shows the comparison between the HOS
simulation predictions (M = 3 and 4) and the regular perturbation solution (cf.
(4.23)) for the class III sub-harmonic reflection coefficient for a wide range of θ. For
comparison, the results for a different mean water depth kbh = 2.2 are also shown.
The agreement between HOS and perturbation results is excellent. From figure 14, it
is seen that the reflected resonant wave amplitude can depend strongly on the mean
depth which determines the resonant incident wavenumber via (3.9). Note also the
presence of two critical incidence angles at which the propagation of the incident
wave is unaffected by the presence of the bottom ripples. The vanishing of the Bragg
resonant wave can be seen from (4.23) wherein the terms associated with B(3)

2 and
F(3) cancel exactly at the critical angles.

Class III super-harmonic Bragg transmission can be illustrated in a similar way.
We use the same bottom topography as in the normal-incidence transmission case in
§6.3.1: L0 = 5λb and kbd = 0.025; and, for comparison, again consider two mean water
depths kbh = 0.25 and kbh = 0.325. The incident wave steepness is fixed at kA = 0.03
and the incident wavenumber k leading to super-harmonic Bragg transmission is
obtained from (3.9) for each value of the incidence angle θ over a broad range.
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Figure 15. Class III Bragg super-harmonic transmission coefficient as a function of incidence wave
angle θ relative to the bottom ripples, for kA = 0.03, kbd = 0.025 and L0/λb = 5. Results plotted
are: regular perturbation solutions (——) for kbh = 0.25 and (- - -) for kbh = 0.325; and HOS
computations for M = 3 (2) and M = 4 (©) for the respective mean depths.

Figure 15 plots the (three-dimensional) HOS simulation results and the perturbation
solutions (cf. (4.23)) for the transmitted super-harmonic wave amplitude as a function
of the incidence angle θ. The HOS and perturbation results again compare well.
Unlike the sub-harmonic reflection case above, there exists now only one critical
incidence angle at which the resonant class III transmitted wave amplitude vanishes.
Below this critical angle the transmitted wave amplitude remains fairly constant for
varying θ.

7. Conclusions
We study the generalized Bragg scattering of surface waves by periodic bottom

ripples. By considering the general conditions for resonance of the wave–bottom
interactions, we obtain, in addition to the known class I and class II Bragg reflections
at second- and third-order respectively, conditions for a new third-order class III
Bragg resonance. As with class II resonance, the class III Bragg mechanism is also
a quartet resonant interaction but involves three surface and one bottom wave
components and hence is a manifestation of free-surface nonlinearity. For theoretical
guidance, we work out the regular perturbation solutions for these resonances which
are relevant for the (initial) spatial/temporal growth of the Bragg resonant waves.

To obtain direct numerical support of the above and to provide a practical solu-
tion method for general nonlinear resonant wave–bottom interaction problems, we
develop a highly accurate (exponential convergence with number of free-surface and
bottom wave modes N) and efficient (computational effort approximately linearly
proportional to N) numerical method based on the high-order spectral (HOS) ap-
proach of Dommermuth & Yue (1987) and Liu et al. (1992) for nonlinear wave–wave
and wave–body problems. The method is efficacious for (arbitrary) high-order (M)
wave–bottom calculations in two- and three-dimensions and provides a capability
for practical wave–bottom interaction computations not available from numerical
methods using direct discretizations of the fluid volume or boundary. For illustration,
results for M up to 4 in two and three dimensions are presented.

First, we obtain results for normal and oblique incidences over parallel bottom bars
under class I and class II (sub-harmonic) Bragg resonance conditions for which there
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exist experimental and theoretical (multiple-scale perturbation analysis) results. The
agreement is excellent. We then apply the spectral method to the new cases of class II
reflection by bi-directional bottom undulations, and class III Bragg resonance. For the
realistic values of free-surface and bottom slopes and bottom patch sizes we consider,
the amplitudes of the Bragg resonated waves for the third-order (class II and class
III) cases can be comparable in magnitude to second-order class I Bragg reflection
and the incident wave. Thus, these generalized higher-order Bragg mechanisms may
play an appreciable role in the development of nearshore surface waves.

This work is supported financially by grants from the Office of Naval Research
(Mechanics & Energy Conversion Division) whose sponsorship is gratefully acknowl-
edged.

Appendix. Calculation of the reflection and transmission coefficients
For a general nonlinear wave field, η(x, t), composed of incident, ηi(x, t), reflected,

ηr(x, t), and transmitted, ηt(x, t), waves, we extend the approach of Goda & Suzuki
(1976) to decompose them and thus obtain the reflection and transmission coefficients.

After factoring out the fast spatial and temporal dependences, we can write the
free-surface elevation as

η(x, t) = ar(x) cos(kr · x−ωt+δr)+at(x) cos(kt · x−ωt+δt)+higher harmonics, (A 1)

where respectively kr and kt represent the wavenumbers of the reflected and trans-
mitted waves, ar and at the corresponding wave amplitudes, and δr and δt their initial
phases. It should be noted that the wave amplitudes ar(x) and at(x) vary only slowly
in space x. Through a time-harmonic analysis, η(x, t) also can be expressed as

η(x, t) = ηc(x) cosωt+ ηs(x) sinωt+ higher harmonics, (A 2)

where the amplitudes, ηc(x) and ηs(x), have fast dependences on x. At the first
harmonic, it follows from (A 1) and (A 2) that

ar(x) cos(kr · x−ωt+εr)+at(x) cos(kt · x−ωt+εt) = ηc(x) cosωt+ηs(x) sinωt. (A 3)

Applying (A 3) at two discrete points (x and x+ ∆x) and solving for ar and at, we
obtain:

ar(x) = [2− 2 cos(ψ1 − ψ2)]
−1/2

[
(ηc2 − ηc1 cosψ2 + ηs1 sinψ2)

2

+(ηs2 − ηs1 cosψ2 − ηc1 sinψ2)
2
]1/2

(A 4)

and

at(x) = [2− 2 cos(ψ1 − ψ2)]
− 1

2

[
(ηc2 − ηc1 cosψ1 + ηs1 sinψ1)

2

+(ηs2 − ηs1 cosψ1 − ηc1 sinψ1)
2
]1/2

(A 5)

where ψ1 = kr ·∆x, ψ2 = kt ·∆x, ηc1 = ηc(x), ηc2 = ηc(x + ∆x), ηs1 = ηs(x), and ηs2 =
ηs(x+ ∆x). The reflection and transmission coefficients are given by R(x) = ar(x)/a1

and T (x) = at(x)/a1 where a1 is the first-harmonic amplitude of the incident wave.
We remark that due to the use of the approximation ar,t(x) ≈ ar,t(x + ∆x) in

obtaining (A 4) and (A 5), small ∆x (i.e. |∆x| � 1) should be used in practice to obtain
high accuracy for ar and at. The above procedure can also be applied to determine
the transmission and reflection of other harmonic waves.
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